If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2=169p
We move all terms to the left:
p^2-(169p)=0
a = 1; b = -169; c = 0;
Δ = b2-4ac
Δ = -1692-4·1·0
Δ = 28561
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{28561}=169$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-169)-169}{2*1}=\frac{0}{2} =0 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-169)+169}{2*1}=\frac{338}{2} =169 $
| x=12=7.3 | | 14x+–17x+–19=8 | | 2x=7x-4=3x+9 | | 2n^2=14-1 | | 1.257.5(4x-10)=7.5 | | 2x+5+x-5+60=180 | | –3r(7r+4)=0 | | Y=x+26 | | (2p4+7p3)=(2p4-3p3) | | -48+8x=77+3x | | (7/6)y=49 | | (2x+1)=2x+15 | | 19x=173 | | x=-2+1/2.1 | | 5(p−3)=63 | | c=11=25 | | 7x15=15 | | e=3+0.4/2 | | 8b-(3b+8)=11 | | d=5+0.25/1 | | 75=1.8x+32 | | 5x-7=4x-10=9x-3 | | 12/13=n/36 | | −2 | | 18w+22=346 | | -(u+-8)=0 | | −2 | | c=+4 | | 18+x+2+x-8=180 | | 10x-11=4x | | 1017.36=4*3.14*r^2 | | 8^4x^+2=64 |